The Real Number System

The Set of Real Numbers **R** is made up **two** disjoint set of Numbers:

- The Set of Rational Numbers and
- The Set of Irrational Numbers

See diagram below

Example: YouTube videos:

Rational and Irrational Numbers: <u>https://www.youtube.com/watch?v=cLP7INqs3JM</u>

Example: YouTube videos properties of real numbers:

- Distributive Property: <u>https://www.youtube.com/watch?v=xC-fQ0KEzsM</u>
- Commutative property: <u>https://www.youtube.com/watch?v=UeG_EYd-0xw</u>
- Associative property: <u>https://www.youtube.com/watch?v=fUgkIcx82xY</u>

Example: YouTube videos (PEMDAS)

- Order of operations 1: <u>https://www.youtube.com/watch?v=ClYdw4d4OmA</u>
- Order of operations 2: <u>https://www.youtube.com/watch?v=piIcRV2dx7E</u>
- Order of operations 3: <u>https://www.youtube.com/watch?v=3Po3nfITsok</u>

The Rational Numbers

Definition: (Rational Numbers)

A Rational Number is a number that can be written in the form a/b; a and b integers, $b \neq 0$. In other words, a Rational Number is a number the can be written in a fraction form

Examples: Rational Numbers

a) -5, 11, 5/4, 22/7, 111/87, 0, -121, -1/3, 1/3, etc.

b) 0.333..., 5.33, -3.65, 0.242424...= $0.\overline{24}$, 3.612612612...= $3.\overline{612}$, etc.

Decimal Representation of a Rational Number

A Rational Number has a **decimal representation** that either **terminates** or **repeats**.

Example: 0.5 is a terminating decimal 0.333... = $0.\overline{3}$ is a repeating decimal

Example: Change $2.\overline{7}$ in to a fraction.

Solution: We use the following procedure for changing a repeating decimal in to a fraction.

Let $x = 2.\overline{7}$. Since only one digit is repeating, we multiply both sides by 10 (If there were two digits repeating we multiply by 100, three digits repeating by a 1000 and so on) to get

27.777 ...

25.0

$$10x = 10 \times 2.777$$
 ...

 $10x = 27.777 \dots$

Now we **take** the **difference** between **10***x* and *x*

$$10x - x = (27.777...) - (2.777...)$$
 Note $- 2.777...$

Thus, 9x = 25, then dividing both sides by 5 we get

$$x = \frac{25}{9}$$

That is, $x = 2.\overline{7} = \frac{25}{9}$

Example 1: Decimal Numbers

- a) 23 = 23.0 Terminating decimal
- b) 1.253 Terminating decimal
- c) 1.333... Repeating Decimal
- d) $3.612612612...= 3.\overline{612}$ Repeating Decimal
- e) Any integer is a rational number

Example 2: Write the following numbers in fraction form

- a) 1.33 d) $3.\overline{612}$
- b) 1.333... e) 0. 12
- c) -2.455

Example: YouTube Videos:

- Converting fractions to a decimals: <u>https://www.youtube.com/watch?v=Gn2pdkvdbGQ</u>
- Converting decimals to fractions: <u>https://www.youtube.com/watch?v=DR2DYe7PI74</u>
- Converting repeating decimals to fraction: <u>https://www.youtube.com/watch?v=Ihws0d-WLzU</u>

The Irrational Numbers

Definition: (Irrational Numbers)

An **Irrational Number** is a number that **cannot** be written in the form a/b; a and b integers, $b \neq 0$.

An Irrational Number Cannot be written in a fraction form

Example 3: Examples of Irrational numbers

a) 1.01001000100001	e) $\sqrt{2}$
b) 0.12345	f) e
c) – 4.110111011110	g) ³ √7
1)	

d) π

Decimal Representation of an Irrational Number

An Irrational Number has a decimal representation that neither terminates nor repeats

Example 4:

- a) $\sqrt{2} = 1.41421356237...$
- b) -4.110111011110...
- c) e = 2.71828182845...
- d) $\pi = 3.14159265358 \dots$

Example 5: Show that $\sqrt{2}$ cannot be written as a fraction.

Proof: YouTube video

The square root of 2 is irrational: <u>https://www.youtube.com/watch?v=mX91_3GQqLY</u>

Important Notations of Set of Numbers

- **R** Denotes the set of **Real numbers**
- ${\bf Q}$ Denotes the set of ${\bf Rational\ numbers}$
- \mathbf{Z} Denotes the set of Integers
- W- Denotes the set of Whole numbers
- N Denotes the set of Natural numbers

Summary Chart of the Number Systems

