The Real Number System

The Set of Real Numbers \mathbf{R} is made up two disjoint set of Numbers:

- The Set of Rational Numbers and
- The Set of Irrational Numbers

See diagram below

The Irrational Numbers	Rational Numbers
	Non-Integer Fractions

Example: YouTube videos:

- Rational and Irrational Numbers: https://www.youtube.com/watch?v=cLP7INqs3JM

Example: YouTube videos properties of real numbers:

- Distributive Property: https://www.youtube.com/watch?v=xC-fQ0KEzsM
- Commutative property: https://www.youtube.com/watch?v=UeG_EYd-0xw
- Associative property: https://www.youtube.com/watch?v=fUgkIcx82xY

Example: YouTube videos (PEMDAS)

- Order of operations 1: https://www.youtube.com/watch?v=ClYdw4d4OmA
- Order of operations 2: https://www.youtube.com/watch?v=piIcRV2dx7E
- Order of operations 3: https://www.youtube.com/watch?v=3Po3nfITsok

The Rational Numbers

Definition: (Rational Numbers)

A Rational Number is a number that can be written in the form $\boldsymbol{a} / \boldsymbol{b} ; \boldsymbol{a}$ and \boldsymbol{b} integers, $\boldsymbol{b} \neq \mathbf{0}$. In other words, a Rational Number is a number the can be written in a fraction form

Examples: Rational Numbers
a) $-5,11,5 / 4,22 / 7,111 / 87,0,-121,-1 / 3,1 / 3$, etc.
b) $0.333 \ldots, 5.33,-3.65, \quad 0.242424 \ldots=0 . \overline{24}, \quad 3.612612612 \ldots=3 . \overline{612}$, etc.

Decimal Representation of a Rational Number

A Rational Number has a decimal representation that either terminates or repeats.
Example: 0.5 is a terminating decimal
$0.333 \ldots=0 . \overline{3} \quad$ is a repeating decimal

Example: Change $\mathbf{2 .} \overline{\mathbf{7}}$ in to a fraction.

Solution: We use the following procedure for changing a repeating decimal in to a fraction.
Let $\boldsymbol{x}=\mathbf{2 .} \overline{\mathbf{7}}$. Since only one digit is repeating, we multiply both sides by 10 (If there were two digits repeating we multiply by 100, three digits repeating by a 1000 and so on) to get
$10 x=10 \times 2.777 \ldots$
$10 x=27.777 \ldots$
Now we take the difference between $10 \boldsymbol{x}$ and \boldsymbol{x}
27.777 ...
$10 x-x=(27.777 \ldots)-(2.777 \ldots)$
Note $-\frac{2.777 \ldots}{25.0}$
Thus, $\mathbf{9 x}=\mathbf{2 5}$, then dividing both sides by $\mathbf{5}$ we get
$x=\frac{25}{9}$
That is, $x=2 . \overline{7}=\frac{25}{9}$
Example 1: Decimal Numbers
a) $23=23.0 \quad$ Terminating decimal
b) 1.253 Terminating decimal
c) $1.333 \ldots$ Repeating Decimal
d) $3.612612612 \ldots=3 . \overline{612} \quad$ Repeating Decimal
e) Any integer is a rational number

Example 2: Write the following numbers in fraction form
a) 1.33
d) $3 . \overline{612}$
b) 1.333...
e) $0 . \overline{12}$
c) -2.455

Example: YouTube Videos:

- Converting fractions to a decimals: https://www.youtube.com/watch?v=Gn2pdkvdbGQ
- Converting decimals to fractions: https://www.youtube.com/watch?v=DR2DYe7PI74
- Converting repeating decimals to fraction: https://www.youtube.com/watch?v=Ihws0d-WLzU

The Irrational Numbers

Definition: (Irrational Numbers)

An Irrational Number is a number that cannot be written in the form $\boldsymbol{a} / \boldsymbol{b}$; \boldsymbol{a} and \boldsymbol{b} integers, $\boldsymbol{b} \neq \mathbf{0}$. An Irrational Number Cannot be written in a fraction form

Example 3: Examples of Irrational numbers
a) $1.01001000100001 \ldots$
e) $\sqrt{2}$
b) 0.12345...
f) \mathbf{e}
c) $\mathbf{- 4 . 1 1 0 1 1 1 0 1 1 1 1 0 . . . ~}$
g) $\sqrt[3]{7}$
d) π

Decimal Representation of an Irrational Number

An Irrational Number has a decimal representation that neither terminates nor repeats

Example 4:

a) $\sqrt{2}=1.41421356237 .$.
b) $-4.110111011110 \ldots$
c) $e=2.71828182845$. .
d) $\pi=3.14159265358 \ldots$

Example 5: Show that $\sqrt{2}$ cannot be written as a fraction.
Proof: YouTube video
The square root of 2 is irrational: https://www.youtube.com/watch?v=mX91_3GQqLY

Important Notations of Set of Numbers
\mathbf{R} - Denotes the set of Real numbers
Q - Denotes the set of Rational numbers
\mathbf{Z} - Denotes the set of Integers
W- Denotes the set of Whole numbers
\mathbf{N} - Denotes the set of Natural numbers

Summary Chart of the Number Systems

